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Abstract. We prove that for any α ∈ (0, 1), the C1,α regularity of level sets for solutions
to a class of active transport equations is propagated over the existence time of the solution.
This extends a recent result of Bertozzi, Garnett, Laurent, and Verdera for patch boundary
regularity for the aggregation equation.
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1. Introduction

1.1. Active transport equations. We consider active transport equations of the form, ∂tρ+ v · ∇ρ = F (ρ),
v = K ∗ ρ,
ρ(0) = ρ0

(1.1)

in Rd, d ≥ 2. We assume that the function F : R → R is continuously differentiable with
F ′ locally Lipschitz and F (0) = 0. To fix terminology, we refer to ρ as the density of an
unspecified substance (though we impose no requirement on the sign of ρ) and v as the
velocity field.

Throughout this paper we fix α ∈ (0, 1).
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Our purpose is to show that if (subsets of) the level sets of the initial density (that is, sets
on which ρ0 is constant) have C1,α regularity as a curve in 2D, surface in 3D, or hypersurface
for d ≥ 4, then they retain that regularity for the existence time of the weak solution. Hence,
we employ a kernel that neither smooths the density nor introduces additional singularities,
as smoothing would trivialize the problem and adding singularities would prevent the prop-
agation of level set regularity. In short, this means that the kernel must impart to v one
more derivative of regularity than that possessed by ρ. A not quite completely general form
of such a kernel is

K = R∇Φ, (1.2)

where Φ is the fundamental solution of the Laplacian, or Newtonian potential (so ∆Φ = δ),
and R is a rotation matrix.

In the 2D special case in which F ≡ 0 and R gives rotation counterclockwise by 90◦ (so
K = ∇⊥Φ), we obtain the 2D Euler equations without forcing:

∂tω + v · ∇ω = 0,
v = ∇⊥Φ ∗ ω,
ω(0) = ω0,

(1.3)

where we write ω in place of ρ, and where ∇⊥ := (−∂2, ∂1). Here, ω = curl v := ∂1v
2 − ∂2v

1

is the vorticity and div v = 0. This was the first instance of an active scalar equation for
which the propagation of striated regularity, a generalization of the level set regularity in this
paper, was demonstrated—by Chemin [7, 8]. This gave as a special case that the regularity
of the boundary of a vortex patch (initial vorticity the characteristic function of a bounded
domain) is propagated over time (also shown in [2]).

1.2. Aggregation equation. References [7, 8, 20] and all subsequent studies of the vortex
patch problem ([11, 14, 12, 1], for instance) very much rely upon v being divergence-free, both
to derive identities related to transport equations and to obtain estimates in negative Hölder
spaces of the regularity of solutions to the resulting transport equations, estimates that do
not hold when div v 6≡ 0. In this paper, we treat the complementary case corresponding to
R = −I, in which curl v = 0 but div v 6≡ 0, choosing

K = −∇Φ. (1.4)

Hence, we have a type of gradient flow, in which div v = −ρ.
This is the kernel appearing in the aggregation equation with Newtonian potential (the

inviscid form of a limiting case of the Keller-Segel equation), ∂tρ+ v · ∇ρ = ρ2,
v = −∇Φ ∗ ρ,
ρ(0) = ρ0.

(1.5)

Then div(ρv) = v ·∇ρ+ρdiv v = v ·∇ρ−ρ2, so (1.5)1 can be written in the usual divergence
form, ∂tρ + div(ρv) = 0. We see that F (ρ) = ρ2 in (1.5), but we work with a general F ,
as it creates no significant additional difficulties and, in fact, the structure of the associated
transport equations are a little clearer in the more general form. It also makes more trans-
parent the comparison to the approach in [3], in which (1.5) is transformed into (1.1, 1.4)
with F = ρ(ρ− 1) ≡ 0 for patch data (see Section 11).
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To get a feel for the problem, let us consider the situation somewhat formally at first. Let
us assume that v possesses a unique flow map, η; that is, η : [0, T ]× Rd → Rd satisfies

∂tη(t, x) = v(t, η(t, x)), η(0, x) = x. (1.6)

Then (1.1)1,3 can be written as

d

dt
ρ(t, η(t, x)) = F (ρ(t, η(t, x))) , ρ(0, x) = ρ0(x) (1.7)

or in integral form as

ρ(t, η(t, x)) = ρ0(x) +

∫ t

0
F (ρ(s, η(s, x))) ds. (1.8)

Fixing x ∈ Rd and defining ρ(t) = ρ(t, η(t, x)), we have ρ′(t) = F (ρ(t)), ρ(0) = ρ0(x).
Since F is locally Lipschitz (we will also need F ′ locally Lipschitz later in the proof of
Proposition 8.2), there exists a unique solution at least up to the possibly infinite time,

T ∗ = T ∗(‖ρ0‖L∞ , F ). (1.9)

If F ≥ 0 then it is easy to see that T ∗ is a decreasing function of its first argument.
For example, when F (ρ) = ρ2 as in (1.5), we find (see, for instance, the discussion in [4]),

ρ(t) = ρ(t, η(t, x)) =
ρ0(x)

1− ρ0(x)t
,

and T ∗ = ‖ρ+
0 ‖
−1
L∞ , where ρ+

0 is the positive part of ρ0. Solutions are global-in-time if ρ0 ≤ 0.
These formal considerations can be made rigorous and lead to Theorem 1.2, below.

Definition 1.1. Fix T > 0 and let v : [0, T ] × Rd → Rd be a velocity field that is log-
Lipschitz in space. Let η : [0, T ] × Rd → Rd be its unique flow map (as in (1.6)). We
say that ρ is a Lagrangian solution to (1.1, 1.4) with initial density ρ0 if (1.8) holds and
ρ(t, x) = −div v(t, x) for all (t, x) ∈ [0, T ]× Rd.

Existence of weak solutions for the particular kind of striated regularity we will impose on
the initial data will appear as part of the proof of Theorem 2.3. In its proof, however, we use
the following well-posedness result, applied to smooth initial data.

Theorem 1.2. Let ρ0 ∈ L∞(Rd) have compact support, K0 ⊆ Rd. Fix T > 0 with T < T ∗.
There exists a unique Lagrangian solution to (1.1, 1.4), and ρ(t) remains compactly supported
in some K(T ) ⊆ Rd, with K(T ) depending only upon T , K0, and ‖ρ0‖L∞. Moreover,

‖ρ(t)‖Lp ≤ C ‖ρ0‖Lp (1.10)

for all p ∈ [1,∞] and t ∈ (0, T ), where C = C(T, p,K0, ‖ρ0‖L∞).

If ρ0 also lies in Ck,α(Rd) for some k ≥ 0 then ρ ∈ L∞(0, T ;Ck,α(Rd)). When k ≥ 1,
ρ ∈ Ck(0, T ;Ck,α(Rd)) and is also the unique, classical Eulerian solution.

Proof. The proof in the case of the aggregation equation (F (ρ) = ρ2) is given in [4]; for a
slightly more general case, see [10]. Both proofs are easily adapted to allow the general form
in (1.1)1. We note here only that we imposed the restriction that F (0) = 0 so that the
compact support of ρ(t) will be maintained for the full time of existence. �

We also have the following formulation of a weak Eulerian solution to (1.1, 1.4):
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Definition 1.3. We say that ρ ∈ C([0, T ];L2(Rd)) is a weak Eulerian solution to (1.1, 1.4)
with initial density ρ0 ∈ L2(Rd) if ρ(0) = ρ0 and∫

(0,T )×Rd
(ρ∂tϕ+ ρv · ∇ϕ+ (F (ρ)− ρ2)ϕ) = 0

for all ϕ ∈ C∞c ((0, T )× Rd). That is, ρ satifies (1.1, 1.4) as a distribution on (0, T )× Rd.

2. Main results

By patch data in the context of active scalar equations we mean that the active scalar, ρ in
the case of (1.1), is the characteristic function of a domain. The interest in “patch problems,”
by which we mean the question of whether the regularity of the patch boundary is maintained
over time, seems to have originated in [22], where Yudovich first formulated it for the 2D Euler
equations. Interest was renewed by the survey paper [16], and the question was answered
affirmatively for the 2D Euler equations by Chemin in [7, 8].

Actually, Chemin did much more in [7, 8] than address the patch problem. He showed,
roughly speaking, that initial vorticity having Cα regularity in a set of directions measured
by a family of Cα vector fields that together foliate the plane maintain Cα regularity in the
directions of the pushed forward vector fields, which themselves maintain their Cα regularity.
This kind of regularity he called striated. In the case of patch data for a C1,α boundary,
the key Cα vector field would be a tangent vector field on the boundary, extended somewhat
arbitrarily to be Cα throughout the plane. The pushforward of this vector field would remain
tangent to the boundary of the patch, and hence imply the C1,α regularity of the patch
boundary for all time.

Ideally, we would prove a result for the aggregation equation as general as that proved
by Chemin for the 2D Euler equations. This is not, however, possible for reasons that we
will explain subsequently. What we can show, however, is the following more limited result
(stated more precisely and more fully in Theorem 2.3):

Main result roughly stated: Assume that the level sets of ρ0 are composed
of level sets of C1,α functions, ψ1, . . . , ψN (in the language of Definition 2.1,
each ψj is level-set compatible with ρ0). Then the level sets of ρ(t) are com-
posed of the level sets of the transported functions, ψ1(t), . . . , ψN (t), whose
level sets remain C1,α for all time. Very roughly speaking, this says that if
the level sets of ρ0 are C1,α then the level sets of ρ(t) remain C1,α for all time.

For patch data, if ρ0 = 1Ω, where Ω is a bounded domain with a C1,α boundary, we can
use one C1,α function, ψ1, that defines ∂Ω in that ∂Ω = ψ−1

1 (0). If there are multiple patches,
possibly nested, then we simply use one such function for each patch.

So in Theorem 2.3, we assume there are N non-overlapping domains of irregularities in
ρ0 characterized in this manner by ψ1, . . . , ψN , but on the remainder of the plane, ρ0 is
C1,α. A difficulty that arises, however, is that the transported functions, ψ1(t), . . . , ψN (t),
are only Lipschitz continuous, even though their level sets turn out to be C1,α. To obtain this
regularity, we need to introduce another set of vector fields, Z1, . . . , ZN , which are parallel
to ∇ψj for all time and which remain Cα. As applied to the patch problem, then, we use
the Cα regularity of each Zj , which will be normal to the patch boundary, to give the C1,α

regularity of the boundary.
A precise statement of all this is in Definition 2.1 and Theorem 2.3.

Definition 2.1. Let f, g ∈ L∞(Rd) and U be an open subset of Rd. Recalling that measurable
functions are really equivalence classes of functions defined only up to sets of measure 0, we



LEVEL SET REGULARITY FOR ACTIVE TRANSPORT 5

say that f is level-set-compatible with g on U if for some representatives of their respective
equivalence classes, which we will continue to call f and g, each level set of f in U is contained
in a level set of g in U , up to sets of measure zero. (So, for instance, any f is compatible
with a constant function.)

Definition 2.2. We say that an initial compactly supported density ρ0 ∈ L∞(Rd) is suitable
if there exists a collection (ψj)

N
j=1 of C1,α(Rd)-functions with the following properties:

• Each ψj is level-set-compatible with ρ0 on Uj, the interior of suppψj.
• For each j ≤ N , Uj is connected and intersects no other Uk.

• There exists an open V ⊆ Rd, which, together with the Uj’s, cover Rd.
• On V , ρ0 is C1,α.
• There exists r0 > 0 such that for all j and all x ∈ ∂Uj, the ball Br0(x) ⊆ V .
• |∇ψj | ≥ C0 on Uj \ V for some fixed C0 > 0.

Theorem 2.3. Let ρ0 be a suitable initial density, as in Definition 2.2, and let ρ be the
unique Lagrangian solution to (1.1, 1.4) given by Theorem 1.2 on [0, T ] for some T < T ∗.
Then ρ is also a weak Eulerian solution to (1.1, 1.4) as in Definition 1.3 and the following
hold:

(a) ∇v ∈ L∞((0, T )× Rd) with ‖∇v(t)‖L∞ ≤ CeCt, where C depends only upon ρ0.
(b) Let ψj(t) be ψj transported by the flow map for v. Then for all t ∈ [0, T ],

‖∇ψj(t)‖L∞ ≤ ‖∇ψj(0)‖L∞ e
eC(T )t

, (2.1)

ψj(t) is level-set-compatible with ρ(t) on the interior of suppψj(t) and the level sets of
ψj(t) are C1,α. Here, C(T ) depends continuously on F , ρ0, and T .

(c) For each j there exists a solution Zj ∈ L∞(0, T ;Cα(Rd)) to

∂tZj + v · ∇Zj = −Zj · ∇v − ρZj , Zj(0) = Y
(j)

0,d , (2.2)

and Zj(t) is non-vanishing and parallel to ∇ψj(t) for all t ∈ [0, T ]. Here, Y
(j)

0,d = ∧i<dY
(j)

0,i

is defined in Section 3 using a sufficient family of vector field in Definition 4.2.

If ρ0 = c1Ω, then we see that ρ(t) = c(t)1Ωt , where Ωt = η(t,Ω) and the value of c(t) is
derived from (1.7); that is, a patch remains a patch over time. Corollary 2.4 shows that the
boundary of a patch maintains C1,α regularity, extending the result in [3] to a general F .

Corollary 2.4. Assume that ρ0 = c1Ω for some constant c, where Ω is a bounded domain in
Rd with C1,α boundary and having a finite number of connected components. Let ρ = c(t)1Ωt

be the unique Lagrangian solution to (1.1, 1.4) given by Theorem 1.2. Then ∂Ωt is C1,α for
all t ∈ (0, T ∗).

Were ρ0 in C1,α on all of Rd, Theorem 1.2 would give ∇v(t) in Cα(Rd) for all time, whereas
for the solutions given by Theorem 2.3, ∇v(t) is only in L∞(Rd). Theorem 2.5 shows that
∇v(t) is C1,α in the same directions in which ρ(t) is C1,α. For patch data, this is no surprise,
since ∇v is C∞ inside and outside the patch, but for more general initial data it is perhaps
somewhat surprising, since v is recovered from ρ globally by (1.1)2, and physically one views
the active scalar ρ as carrying the irregularities in the solution.

A version of Theorem 2.5 for 2D Euler is due to Serfati [20].

Theorem 2.5. Let ρ, v, η be as in Theorem 2.3. There exists a matrix field A ∈ L∞(0, T ;Cα(Rd))
such that for all t ∈ [0, T ],

∇v(t)− ρ(t)A(t) ∈ Cα(Rd). (2.3)
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The matrix A of Theorem 2.5 has a very simple form: see Remark 10.1.
From Theorems 2.3 and 2.5 we will establish Theorem 2.6.

Theorem 2.6. Let ρ be the solution to (1.1, 1.4) given in Theorem 2.3. If ρ0 ∈ Ck,α(W )
for some open W ∈ Rd, where k = 0 or 1, then ρ(t) ∈ Ck,α(η(t,W )) for all t ∈ [0, T ] with a
norm bounded over [0, T ].

2.1. Overview. A logical starting point for any analysis of the patch problem or its general-
izations is to describe the level sets using a function that has greater regularity than ρ0 itself
(which may have no regularity in directions perpendicular to its level sets), transport this
function by the flow map, and use its regularity to indicate the regularity of the level sets at
time t. In Theorem 2.3, this could be ψj , which has C1,α regularity, except that ∇ψj(t) fails
to have Cα regularity for t > 0.

For an aggregation patch, this difficulty is overcome in [3] by adding a carefully chosen
forcing term to the transport equation for ψj , which leads to an evolution equation for ∇ψj .
The special forcing term cancels a singularity that would otherwise appear in this evolution
equation and allows the authors of [3] to show that the C1,α regularity of the boundary
persists over time. (In Section 11 we give a more in-depth explanation.)

As we will see, the evolution equation in [3] is actually that of the wedge product of
d− 1 linearly independent vector fields initially tangent to the patch boundary that are each
separately pushed forward by the flow map. This is in accordance with the approach taken
by Chemin for the 2D Euler equations in [8] and in higher dimension by Danchin in [11], used
to eliminate the apparent singularity that occurs in the evolution equation for ∇ψj .

What allows the approach in [8, 11] to work is that the pushforward of any vector field
that is tangent to the level sets initially remains tangent to the transported level sets for all
time. Hence, if we construct a complete set of vector fields, (Y1, . . . , Yd−1), tangent to the
level sets, we can push these forward by the flow to serve as a framework against which to
assess the regularity of the level sets. Topological considerations make it clear that one set
of vector fields will usually not suffice, but rather an entire family will be needed. The idea
of using such a family goes back to Bony [5] (see the remarks at the end of Chapter 5 of [9]).

In treating the initial data, however, we will encounter a substantial complication that
does not appear for the Euler equations, and it is this complication that makes it impossible
to treat irregularities in the initial data as general as those treated for the Euler equations.

To explain this complication, we must first define what we mean by Y ·∇ρ when ρ lies only
in L∞ with Y ∈ Cα(Rd) and div Y ∈ L∞(Rd), so Y · ∇ρ does not make sense as a pointwise
product. We interpret this product in the sense of distributions as

Y · ∇ρ := div(ρY )− ρ div Y.

On the right-hand side, div(ρY ) is a distributional derivative (and so a distribution) and
ρdiv Y is a regular distribution. Equivalently, we can define Y · ∇ρ by its action on test
functions:

(Y · ∇ρ, ϕ) = −(ρ, div(ϕY )) for all ϕ ∈ C∞c (Rd). (2.4)

Now, suppose that Y · ∇ρ = 0. We would like to interpret this as meaning that ρ is
constant a.e. in directions given by Y , as it would if Y and ρ were sufficiently smooth: the
unique flow map for Y would determine its directions and Y · ∇ρ = 0 would mean that ρ
is constant along the flow lines. (Or, the flow lines form level sets of ρ.) But Y is only Cα,
so flow maps exist for it but need not be unique. And even were Y smooth enough to give
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unique flow lines, Y · ∇ρ = 0 would only mean that (ρ, div(ϕY )) = 0 for all ϕ ∈ C∞c (Rd),
and it is not easy to show that this means that ρ is constant a.e. along the flow lines.

The true difficulty with Y · ∇ρ, though, lies not in its interpretation, but in preparing
the initial data in such a way that Y0 · ∇ρ0,n—where (ρ0,n) is a sequence of approximating,
more regular initial densities—is controlled by Y0 · ∇ρ0 in the appropriate norm. In treating
the 2D Euler equations (1.3) in [7, 8], the appropriate norm is the negative Hölder space,
Cα−1, which allows ω0,n to be prepared in the standard way by mollification, leading easily
to the bound, ‖div(ω0,nY0)‖Cα−1 ≤ C ‖div(ω0Y0)‖Cα−1 . This norm is appropriate, because
div(ω0Y0) is purely transported by the flow (so it is used instead of Y0 ·∇ω0), and the velocity
field is divergence-free, which allows the propagation of regularity in the Cα−1 norm.

As we will see in Section 8, however, neither Y0 ·∇ρ0 nor div(ρ0Y0) are purely transported
by the flow for (1.1, 1.4). We can easily propagate the L∞ norm of Y0 · ∇ρ0 and div Y0,
but simple mollification of ρ0 to obtain ρn,0 will not lead to any control on Y0 · ∇ρn,0 in
L∞, so this is of no use. Conceptually, we avoid these difficulties by using a family of C1,α

hypersurfaces, both to regularize the initial data so that ρ0,n ∈ C1,α and Y0 ·∇ρ0,n is bounded
in L∞, and to construct an appropriate family of vector fields against which to measure the
striated regularity as they are pushedforward by the flow map. In actuality, we never define
these hypersurfaces, using only their normal vector fields given by the family of functions
(∇ψj).

Beyond preparing the initial data, the core difficulty in proving the propagation of striated
regularity, even for patch data, is showing that the velocity gradient remains Lipschitz over
time. Although our manner of proof is adapted from [7, 8], this core difficulty is handled,
as it is in [1], by adapting Serfati’s [20]. This appears in our use of Lemma 5.1 to establish
(9.5), the key inequality that closes the bounds that yield ∇v ∈ L∞((0, T )× Rd).

Finally, we mention that in 2D, if we assume that div Y0 = 0, a unique classical flow
map for Y0 does exist and the corresponding transport equation has a unique solution, as
shown in [6]. (Such uniqueness does not extend to higher dimension or to non-autonomous
systems.) This would allow us to prepare the initial data in 2D under the assumption that
Y0 ∈ Cα(R2), divY0 = 0, ρ0 ∈ L∞(R2), and Y0 · ∇ρ0 = 0. Here, Y is a collection of vector
fields, a sufficient family, as defined as in [8, 11] (or see Definition 4.1, below). We do not
pursue this in detail, here, however, as we are interested in a dimension-independent result.

2.2. Organization of this paper. In Section 3, we fix some notation and make a few
definitions, leaving the definition of a sufficient family to Section 4. In Section 5, we give a
linear algebra lemma due to Serfati that will be used in our proof of Theorem 2.3 to obtain a
refined estimate on∇v in L∞. Section 6 includes a number of lemmas centered around∇v. In
Section 7, we discuss the preparation of the initial data. In Section 8, we derive the transport
equations for the pushforward of a vector field by a gradient vector field. In Section 9, we
prove Theorem 2.3 and Corollary 2.4; in Section 10, we prove Theorems 2.5 and 2.6. In
Section 11, we compare our proof to the proof in [3] of the propagation of regularity of the
boundary of an aggregation patch.

3. Notation, conventions, and definitions

We define

Mm×n(R) = the space of all m× n real matrices,

M i
j = the element at the i-th row, j-th column of M ∈Mm×n(R),

Mj = the j-th column of M ∈Mm×n(R),
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M ·N =
∑
i,j

M i
jN

i
j =

∑
j

Mj ·Nj for all M,N ∈Mm×n(R),

where repeated indices appearing in upper/lower index pairs are summed over, but no sum-
mation occurs if the indices are both upper or both lower.

We write |v| for the Euclidean norm of v = (v1, v2, · · · , vd), |v|2 = (v1)2 + (v2)2 + · · · (vd)2.
For M ∈Mm×n(R), we use the operator norm,

|M | := max
|v|=1

|Mv| . (3.1)

For M in Md×d(R), let cofacM be its cofactor matrix; thus, (cofacM)ij = (−1)i+j times

the (i, j)-minor of M . Form M in Md×d(R) by letting its first d − 1 columns be Y1, . . . ,
Yd−1 and choosing its last column arbitrarily. We can define ∧i<dYi to be the last column of
(cofacM), which we note is independent of the last column of M ; that is,

∧i<dYi := cofac
(
Y1 Y2 · · ·Yd−1 ·

)
d
.

(We are really making a natural identification between the (d− 1)st exterior power, Λd−1Rd,
which is one-dimensional, and Rd itself.) In 2D and 3D,

∧i<2Yi = Y ⊥1 := (−Y 2
1 , Y

1
1 ), d = 2,

∧i<3Yi = Y1 × Y2, d = 3.

Definition 3.1 (Hölder spaces). Let U ⊆ Rd be open. Then Cα(U) is the space of all
measurable functions for which

‖f‖Cα(U) := ‖f‖L∞(U) + ‖f‖Ċα(U) <∞, ‖f‖Ċα(U) := sup
x,y∈U
x 6=y

|f(x)− f(y)|
|x− y|α

.

Note that

‖f ◦ g‖Ċα ≤ ‖f‖Ċα ‖∇g‖
α
L∞ , ‖f ◦ g‖Cα ≤ ‖f‖L∞ + ‖f‖Ċα ‖∇g‖

α
L∞ ,

‖fg‖Cα ≤ ‖f‖Cα ‖g‖Cα , ‖1/f‖Ċα ≤
‖f‖Ċα

(inf|f |)2 ,

‖f ◦ g‖Ċα ≤ ‖f‖ ˙lip ‖g‖Cα .
(3.2)

The last inequality uses the homogeneous Lipschitz norm; if f is in C1 then ‖f‖ ˙lip = ‖f ′‖L∞ .

Definition 3.2 (Radial cutoff functions). We make an arbitrary, but fixed, choice of a radially
symmetric function a ∈ C∞c (Rd) taking values in [0, 1] with a = 1 on B1(0) and a = 0 on
B2(0)C . For r > 0, we define the rescaled cutoff function, ar(x) = a(x/r), and for r, h > 0
we define

µrh = ar(1− ah).

When using the cutoff function µrh, we will be fixing r while taking h→ 0, in which case
we can safely assume that h is sufficiently smaller than r so that µrh vanishes outside of
(h, 2r) and equals 1 identically on (2h, r). It will then follow that

|∇µrh(x)| ≤ Ch−1 ≤ C |x|−1 for |x| ∈ (h, 2h),

|∇µrh(x)| ≤ Cr−1 ≤ C |x|−1 for |x| ∈ (r, 2r),

∇µrh ≡ 0 elsewhere.

(3.3)

Hence, we also have |∇µrh(x)| ≤ C |x|−1 everywhere.
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Lemma 3.3. Let r ∈ (0, 1]. For all f ∈ Ċα(Rd), g ∈ L∞(Rd), we have∣∣∣∣∫ ∇[µrh∇Φ](x− y)(f(x)− f(y))g(y) dy

∣∣∣∣ ≤ Cα−1 ‖f‖Ċα ‖g‖L∞ r
α. (3.4)

(Φ is the fundamental solution of the Laplacian as in (1.2).) For all f ∈ L∞(Rd), we have∣∣∣∣∫ (µrh∇Φ)(x− y)f(y) dy

∣∣∣∣ =

∣∣∣∣∫ (µrh∇Φ)(x− y)(f(y)− f(x)) dy

∣∣∣∣
≤ Cα−1 ‖f‖L∞ r

α.

(3.5)

Proof. See Lemma 3.4 of [1]. (In [1], a negative Hölder space norm on f was used in place of
L∞ in the bound in (3.5), so the bound here, sufficient for our purposes, is not optimal.) �

Definition 3.4. LL = LL(Rd) is the space of bounded log-Lipschitz vector fields with

‖g‖LL := ‖g‖L∞ + sup

{
|g(x)− g(y)|

− |x− y| log |x− y|
: x, y ∈ Rd, 0 < |x− y| ≤ e−1

}
.

4. Sufficient families

We adapt the concept of a sufficient family as defined in [8, 11] to better suit the manner in
which we prepare the initial data, by organizing the vector fields into frames.

Definition 4.1. Let Y = (Y1, . . . , Yd) be an ordered set of Cα vector fields on Rd with
Yd = ∧j<dYj (see Section 3) and where div Y1, . . . ,div Yd−1 ∈ Cα(Rd). We call Y a frame.

Let

Y = (Y (j))j∈Λ = ((Y
(j)

1 , . . . , Y
(j)
d ))j∈Λ, (4.1)

be a family of frames indexed by Λ, which in our applications will be finite.
For any function f on vector fields (such as div or the identity map), define

f(Y) := ((f(Y
(j)

1 ), . . . , f(Y
(j)
d−1)))j∈Λ (4.2)

and define, for any Banach space X,

‖f(Y)‖X := sup
j∈Λ,k<d

‖f(Y
(j)
k )‖X .

Note that we exclude the final vector in each frame. If ‖f(Y)‖X <∞ we say that f(Y) ∈ X.
Define

I(Y) := inf
x∈Rd

sup
j∈Λ
|Y (j)
d (x)|. (4.3)

Definition 4.2. With Y as above, we say that Y is a sufficient family if

Y ∈ Cα(Rd), divY ∈ L∞(Rd), and I(Y) > 0.

Let

Y0 = (Y
(j)

0 )j∈Λ = ((Y
(j)

0,1 , . . . , Y
(j)

0,d ))j∈Λ

be a sufficient family. For any Y
(j)

0,k , k < d, define its pushforward Y
(j)
k (t) (see Section 8 for

more on pushforwards) by

Y
(j)
k (t, η(t, x)) := (Y

(j)
0,k (x) · ∇)η(t, x). (4.4)
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(We assume here that ∇η ∈ L∞((0, T )×Rd).) We then let Y
(j)
d (t) = ∧k<dY

(j)
k (t) and define

the pushforward Y(t) of Y0 as

Y(t) = (Y (j)(t))j∈Λ = ((Y
(j)

1 (t), . . . , Y
(j)
d (t)))j∈Λ.

5. Serfati’s linear algebra lemma

Lemma 5.1 is a version of a linear algebra lemma due to Serfati, appearing in various forms
in [18, 19, 20]. The version here is a minor refinement of the version appearing in [1].

Lemma 5.1. For any symmetric B ∈Md×d(R), d ≥ 1, we have

|B| ≤ P (Y1, . . . , Yd−1)

|∧i<dYi|4
d−1∑
i=1

|BYi|+ |trB| , (5.1)

where Y1, . . . , Yd−1 are any linearly independent vectors in Rd and P is a homogeneous poly-
nomial in Y1, . . . , Yd−1 of degree nd := 4d− 5.

Proof. Setting Yd = ∧k<dYk as in our definition of a frame, form the matrix M by column as

M :=
[
Y1 · · · Yd−1 Yd

]
.

Note that Yd is the last column of M , the cofactor matrix of M (as in our definition of the
wedge product itself in Section 1). Expanding about the last column of M , we see that

|Yd|2 = detM 6= 0, because we assumed that Y1, . . . , Yd−1 are linearly independent.
Now,

MMT = MMT = detM I,

from which it follows that

B =
M

(detM)2
AMT , A := MTBM. (5.2)

Then, noting that Aij = Yi ·BYj , we can write,

A =


Y1 ·BY1 · · · Y1 ·BYd

.

.

.
Yd−1 ·BY1 · · · Yd−1 ·BYd
Yd ·BY1 · · · Yd ·BYd

 .

Because B is symmetric, so is A. Hence, we can replace Yj ·BYd in the final column with

Yd ·BYj , eliminating BYd from all but Add = Yd ·BYd. For Add, we calculate,

Add = Yd ·BYd = Md ·BYd =
d∑
i=1

M i ·BYi −
d−1∑
i=1

M i ·BYi,

where we used that Md = Yd. But,

d∑
i=1

M i ·BYi =
d∑
i=1

(MTBM)ii = tr(MTBM) = tr(MMTB) = detM trB,
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so

Yd ·BYd = detM trB −
d−1∑
i=1

M i ·BYi.

We conclude that

A = E + detM(trB)D,

where

E :=


Y1 ·BY1 · · · Y1 · (BY )d−1 Yd ·BY1

.

.

.
Yd−1 ·BY1 · · · Yd−1 · (BY )d−1 Yd ·BYd−1

Yd ·BY1 · · · Yd · (BY )d−1 −
∑d−1

i=1 M i ·BYi

 , D :=


0 · · · 0

.

.

.
0 · · · 0
0 · · · 1

 .

Now,

(MDMT )ij = M i
kD

k
`M

j
` = M i

dM
j
d = Y i

dY
j
d ,

or,

MDMT = |Yd|2 (trB)Yd ⊗ Yd.

Hence, ∣∣∣∣detM(trB)
M

|Yd|4
DMT

∣∣∣∣ ≤ (trB)
|Yd ⊗ Yd|
|Yd|2

≤ trB.

As can be easily seen, the square of the operator norm of a square matrix is bounded above
by the sum of the squares of the norms of the columns or of the rows. From this, (5.2), the
bound above, and the form in which we have expressed E, (5.1) follows. The degree and the
homogeneity of P follow from scaling, or from summing the degrees of the factors making it
up. �

Lemma 5.2. Let U be an open subset of Rd, d ≥ 2. Assume that (Y1, . . . , Yd) is a frame on
U (so Yd = ∧i<dYi) with ‖Yd‖Cα ≥ C0 > 0. For any symmetric B ∈Md×d(R), we have

‖B‖Cα ≤ C
−8
0 Q(‖Y1‖Cα , . . . , ‖Yd−1‖Cα , ‖BY1‖Cα , . . . , ‖BYd−1‖Cα) + ‖trB‖Cα ,

for some polynomial, Q, the Cα norms being over U .

Proof. The result follows from applying (3.2) to the decomposition of B given in the proof
of Lemma 5.1. �

6. Lemmas involving the velocity gradient

Throughout this section, we assume that

ρ ∈ L1 ∩ L∞(Rd), v = −∇Φ ∗ ρ.

Proposition 6.1 is the extension of (7.12) of [3] to a general ρ.

Proposition 6.1. We have,

∇v(x) = −ρ(x)

d
I − p. v.

∫
∇∇Φ(x− y)ρ(y) dy.
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Proof. Let HΦ be the distributional Hessian matrix of Φ. Then,

HΦ = p. v.∇∇Φ +
1

d
δ0I,

where δ0 is the Dirac delta function at the origin. Using that v = −∇Φ ∗ ρ completes the
proof. �

The next proposition is the analog of Proposition 4.2 of [1].

Proposition 6.2. Let Y be a vector field in Cα(Rd). Then

p. v.

∫
∇∇Φ(x− y)Y (y) ρ(y) dy = −∇Φ ∗ div(ρY )(x)− ρ(x)Y (x)

d
.

Proof. The proof is fairly standard, so we give only an outline. We assume first that ρ ∈
C∞(Rd). Noting that

[∇∇Φ(x− y)Y (y)]j = (∇∇Φ)jk(x− y)Y k(y) = ∂k∂jΦ(x− y)Y k(y) = ∇∂jΦ(x− y) · Y (y),

integration by parts gives[
p. v.

∫
∇∇Φ(x− y)Y (y) ρ(y) dy

]j
= p. v.

∫
∇∂jΦ(x− y) · Y (y) ρ(y) dy

= − lim
δ→0

∫
BCδ (x)

∂jΦ(x− y) div(ρY )(y) dy + lim
δ→0

∫
∂Bδ(x)

∂jΦ(x− y)ρ(y)(Y (y) · n) dy,

where n is the unit outer vector on ∂Bδ(x). The area integral converges in the limit to ∂jΦ ∗
div(ρY ) since ∇Φ is locally integrable. For the boundary integral, one replaces Y (y) by Y (x),
in which case the boundary integral converges to −ρ(x)Y j(x)/d. Using that |Y (x)− Y (y)| ≤
‖Y ‖Ċα |x− y|

α, the error in replacing Y (y) by Y (x) is easily seen to vanish as δ → 0. The
result then follows by a density argument. �

Corollary 6.3. Let Y ∈ Cα(Rd). Then

Y (x) · ∇v(x) = −p. v.

∫
∇∇Φ(x− y) [Y (x)− Y (y)] ρ(y) dy +∇Φ ∗ div(ρY )(x).

Moreover, ∥∥∥∥p. v.

∫
∇∇Φ(x− y) [Y (x)− Y (y)] ρ(y) dy

∥∥∥∥
Cα
≤ CV (ρ) ‖Y ‖Ċα ,

‖Y · ∇v(t)‖Cα ≤ CV (ρ) ‖Y ‖Ċα + ‖div(ρY )‖L∞ ,
where

V (ρ) := ‖ρ‖L∞ +

∥∥∥∥p. v.

∫
∇∇Φ(· − y)ρ(y) dy

∥∥∥∥
L∞

(6.1)

Proof. The expression for Y (x) · ∇v(x) follows from comparing the expressions in Proposi-
tion 6.1 and Proposition 6.2. The Cα-bound on the integral follows from fairly standard
singular integral estimates (for instance, by applying Lemma 3.3 of [1] with the kernel
ρ(y)∇∇Φ(x − y) [Y (x)− Y (y)].) For the bound on the convolution ∇Φ ∗ div(ρY ), we first
note

‖∇Φ ∗ div(ρY )‖Ċα ≤ C ‖∇Φ ∗ div(ρY )‖LL
because

−|x− y| log |x− y|
|x− y|α

≤ C
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when |x − y| ≤ e−1. We then apply the classical estimate ‖∇Φ ∗ f‖LL ≤ C ‖f‖L∞ , which
holds for all d ≥ 2 (see [17, Lemma 8.1] for a 2D proof), to obtain

‖∇Φ ∗ div(ρY )‖LL ≤ C ‖div(ρY )‖L∞ .

�

The estimate ‖∇Φ ∗ f‖LL ≤ C ‖f‖L∞ will also be used later in the proof of Theorem 2.3
in Section 9.2, (iii).

Corollary 6.3 is the extension to a general ρ of Lemma 7.3 of [3]. We note that the term
∇Φ ∗div(ρY )(x) appearing here is cancelled in the setting of [3] by the additional term −ρY
appearing in (7.6) of [3].

Remark 6.4. For any i, j,

(∇v)ij = ∂jv
i = −∂j(∂iΦ ∗ ρ) = −(∂j∂iΦ) ∗ ρ = −(∂i∂jΦ) ∗ ρ = (∇v)ji ,

so ∇v is symmetric, a fact will use in the following sections.

7. Preparing the initial data

In Proposition 7.1 we prepare the initial data and construct a sufficient family in such a way
as to allow us to adapt the machinery created by Chemin in [7, 8] to obtain the propagation
of striated regularity.

Proposition 7.1. Let ρ0 be a suitable initial density, as in Definition 2.2, and let ψj and
Uj be as in that definition. There exists a sufficient family Y0 and a sequence (ρ0,n)n∈N of

functions in C1,α(Rd), such that:

(i) Each ρ0,n is supported in a fixed compact K ⊆ Rd;
(ii) ρ0,n → ρ0 in Lp(Rd) for all p ∈ [1,∞);

(iii) ‖ρ0,n‖L∞ ≤ ‖ρ0‖L∞ for all n ∈ N;
(iv) divY0 = 0;
(v) ‖Y0 · ∇ρ0,n‖L∞ ≤ C for all n ∈ N.

The constant in (v) depends upon ‖ρ0‖L∞ and (ψj).

Remark. Recall that in evaluating a function, such as div, on a frame as in (4.2), we
evaluate the function on all the vector fields in the frame except for the final one.

Proof. Because we deal only with initial data in this proof, we drop the time zero subscripts,
writing ρ and Y, for instance, for ρ0 and Y0. Recall from Definition 2.2 that Uj is the interior
of suppψj .

Since Uj is connected, ψj(Uj) = (aj , bj) for some −∞ < aj < bj < ∞. Because ψj is

level-set-compatible with ρ on Uj as in Definition 2.1, ρ ◦ ψ−1
j : (aj , bj) → R is well-defined:

for any r ∈ (aj , bj), ρ ◦ ψ−1
j (r) = ρ(x), where x is any point in Uj for which ψj(x) = r. For

any n ∈ N, we can then define

ρj,n : Uj → R, ρj,n = (µ1/n ∗ E0(ρ ◦ ψ−1
j )) ◦ ψj ,

where E0 is extension by zero from the domain (aj , bj) to all of R, and (µε)ε≥1 is a family of 1D

mollifiers with µε(·) = ε−dµ(·/ε) and µ1 supported is on (−1, 1). Because µ1/n ∗E0(ρ◦ψ−1
j ) ∈

C∞(R) and ψj ∈ C1,α(Rd), we see that ρj,n ∈ C1,α(Rd).
Any level set of ψj maps to a level set of ρj,n, so ψj is level-set compatible with ρj,n on Uj .
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Let r0 be as in Definition 2.2 and define

U ′j = {x ∈ Uj : dist(x, ∂Uj) > r0/2}.

(Note that U ′j could be empty, though only if Uj ⊆ V , in which case we disregard Uj entirely.)

Construct a partition of unity (ϕj)
N+1
j=1 with the property that for all j ≤ N , ϕj ≡ 1 on

U ′j and ϕj ≡ 0 on Rd \ Uj . Then let ϕN+1 = 1 −
∑

j≤N ϕj . Note that at each point in its
support, ϕN+1 = 1− ϕj for one j.

For any n ∈ N, define ρn by

ρn :=
N∑
j=1

ϕjρj,n + ϕN+1ρ.

Noting that ρ ∈ C1,α(V ) and suppϕN+1 ⊆ V , we see that ρn ∈ C1,α(Rd), and the ρn are
supported in a common compact K ⊂ Rd since ρ is compactly supported, giving (i). Basic
properties of (1D) mollification give (ii) and (iii).

It remains to construct a sufficient family Y satisfying (iv) and (v). In 2D, we need only

N + 1 frames. We define the jth frame, Y (j) = (Y
(j)

1 , Y
(j)

2 ), by choosing

Y
(j)

1 = ∇⊥ψj , Y
(j)

2 = ∇ψj ,

noting that div Y
(j)

1 = 0, giving (iv). For (v), ψj is level-set compatible with ρj,n on Uj , so

Y
(j)

1 · ∇ρj,n = 0. Also, Y
(j)

1 vanishes on Uk for k 6= j. Hence,

Y
(j)

1 · ∇ρn =

N∑
k=1

(
ϕkY

(j)
1 · ∇ρk,n + ρk,nY

(j)
1 · ∇ϕk

)
+ ϕN+1Y

(j)
1 · ∇ρ+ ρY

(j)
1 · ∇ϕN+1

= ρj,nY
(j)

1 · ∇ϕj + ϕN+1Y
(j)

1 · ∇ρ+ ρY
(j)

1 · ∇ϕN+1

= −ρj,nY (j)
1 · ∇ϕN+1 + ϕN+1Y

(j)
1 · ∇ρ+ ρY

(j)
1 · ∇ϕN+1.

Since also ρ is in C1,α(suppϕN+1), we see that each of the terms above is bounded in L∞,
from which (v) follows.

Finally, since ρ is C1,α on UN+1, we can set Y
(N+1)

1 = ∇⊥(ϕN+1e1), Y
(N+1)

2 = (Y
(N+1)

1 )⊥,

and we can see that the family of frames, Y = (Y (1), . . . , Y (N+1)), is sufficient.
The argument for d ≥ 3 is similar to that for 2D, though now we need multiple frames

to “cover” each Uj—these frames are given by applying Lemma 7.3, below, with W = Uj ,
W ′ = U ′j , and ψ = ψj to provide a family of frames Zj . The full family of frames is obtained
as the union, Y = Z1 ∪ · · · ∪ ZN with one final frame added to cover UN+1 by applying
Lemma 7.3, again with W = V , W ′ = V \ ∪jU ′j , and ψ = ϕN+1x1. �

It is shown by Foote in [13] that for a bounded domain Ω ⊆ Rd, if ∂Ω is Ck for k ≥ 2 then
there is a tubular neighborhood U of the boundary in the sense that every point in U has
a unique closest point on ∂Ω. Moreover, although the projection map P : U → ∂Ω to this
closest point is only Ck−1, the signed distance function, δ(x) = ±dist(x, ∂Ω), chosen positive
(negative) if x is outside (inside) is Ck on U . The very simple and clean proofs in [13] extend,
with almost no change, to a C1,α boundary, from which we can conclude that δ is C1,α and
P is Cα on U . Using this δ, it is not hard to apply Proposition 7.1 to obtain the following:
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Corollary 7.2. Let Ω ⊆ Rd be a bounded domain with C1,α boundary and a finite number
of connected components. Then ρ0 := c1Ω, where c is a constant, is a suitable initial density
as in Definition 2.2.

We used the following lemma in the proof of Proposition 7.1.

Lemma 7.3. Let W and W ′ ⊆ W be nonempty open subsets of Rd. Let ψ ∈ C1,α(Rd) with
|∇ψ| ≥ C0 > 0 on W ′. Then there exists a family of frames,

Z = ((Z
(k)
1 , . . . , Z

(k)
d ))dk=1,

with each Z
(k)
j in Cα(W ) and for which divZ

(k)
j = Z

(k)
j · ∇ψ = 0 for all j < d. Moreover,

I|W ′(Z) > 0, where I|W ′ is defined as in (4.3), but restricted to W ′.

Proof. To illustrate the approach, we first show how to choose Z when d = 3. We set

Z
(1)
1 = (−∂2ψ, ∂1ψ, 0), Z

(1)
2 = (−∂3ψ, 0, ∂1ψ),

Z
(2)
1 = (∂2ψ,−∂1ψ, 0), Z

(2)
2 = (0,−∂3ψ, ∂2ψ),

Z
(3)
1 = (∂3ψ, 0,−∂1ψ, ), Z

(3)
2 = (0, ∂3ψ,−∂2ψ).

We also set Z
(k)
3 = Z

(k)
1 ∧Z(k)

2 for each k. Then, divZ
(k)
j = 0 and Z

(k)
j · ∇ψ = 0 for all j < 3,

k ≤ 3. Moreover, for any x0 ∈ W ′, at least one component of ∇ψ(x0), ∂kψ(x0), must have
|∂kψ| (x0) ≥ C0/

√
3. Since ∇ψ is continuous, ∂kψ ≥ C0/2

√
3 on some open set containing

x0. Moreover, it is clear that Z
(k)
1 and Z

(k)
2 are linearly independent, and that locally to x0,

|Z(k)
3 | = |∇ψ|

2 ≥ C2
0 is bounded away from zero. This implies that I|W ′(Z) > 0.

We next take d = 4. We set

Z
(1)
1 = (−∂2ψ, ∂1ψ, 0, 0), Z

(1)
2 = (−∂3ψ, 0, ∂1ψ, 0), Z

(1)
3 = (−∂4ψ, 0, 0, ∂1ψ),

Z
(2)
1 = (∂2ψ,−∂1ψ, 0, 0), Z

(2)
2 = (0,−∂3ψ, ∂2ψ, 0), Z

(2)
3 = (0,−∂4ψ, 0, ∂2ψ),

Z
(3)
1 = (∂3ψ, 0,−∂1ψ, 0), Z

(3)
2 = (0, ∂3ψ,−∂2ψ, 0), Z

(3)
3 = (0, 0,−∂4ψ, ∂3ψ),

Z
(4)
1 = (∂4ψ, 0, 0,−∂1ψ), Z

(4)
2 = (0, ∂4ψ, 0,−∂2ψ), Z

(4)
3 = (0, 0, ∂4ψ,−∂3ψ).

We also set Z
(k)
4 = Z

(k)
1 ∧ Z(k)

2 ∧ Z(k)
3 for each k. We see that on all of W , divZ

(k)
j = 0 and

Z
(k)
j · ∇ψ = 0 for all j < 4, k ≤ 4. Moreover, for any x0 ∈ W ′, at least one component of

∇ψ(x0), ∂kψ(x0), must have |∂kψ| (x0) ≥ C0/2. Since ∇ψ is continuous, ∂kψ ≥ C0/4 on some

open set containing x0. Moreover, it is clear that Z
(k)
1 , Z

(k)
2 , Z

(k)
3 are linearly independent,

and that locally to x0, |Z(k)
4 | = |∇ψ|2 ≥ C2

0 is bounded away from zero. This implies that
I|W ′(Z) > 0.

The extension to any d ≥ 2 is then clear. �

8. Pushforwards and transport

We establish the basic transport equations for Y , div Y , and Y · ∇ρ in Proposition 8.1, and
use them (in part) to establish the bounds in Proposition 8.2.

Proposition 8.1. Assume that ρ is a solution to (1.1, 1.4) for which the velocity, v, is at
least Lipschitz continuous in space uniformly in time and that ∇ρ(t) is at least continuous
in time and space. Let η be the corresponding unique flow map for v as in (1.6). Define the
pushforward of the vector field Y0 ∈ Cα(Rd) by

Y (t, η(t, x)) = Y0(x) · ∇η(t, x). (8.1)
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Then,

∂tY + v · ∇Y = Y · ∇v, (8.2)

∂t div Y + v · ∇ div Y = −Y · ∇ρ, (8.3)

∂t(Y · ∇ρ) + v · ∇(Y · ∇ρ) = F ′(ρ)Y · ∇ρ. (8.4)

Proof. By our assumptions, div(ρY ) and Y · ∇ρ are continuous in time and space. The
identity in (8.2) is classical. Taking the divergence of each side of (8.2), we obtain

∂t div Y + v · ∇ div Y = Y · ∇ div v = −Y · ∇ρ,

giving (8.3).
Using (1.7) and (8.2), we have

d

dt
(ρY )(t, η(t, x)) = ρ(t, η(t, x))

d

dt
Y (t, η(t, x)) + Y (t, η(t, x))

d

dt
ρ(t, η(t, x))

= ρ(t, η(t, x))(Y · ∇v)(t, η(t, x)) + F (ρ(t, η(t, x)))Y (t, η(t, x)),
(8.5)

which we write more compactly as

∂t(ρY ) + v · ∇(ρY ) = ρY · ∇v + F (ρ)Y.

Noting that the derivation of (8.3) from (8.2) did not use the specific definition of Y in
(8.1), the same argument applies with ρY in place of Y . We have, however, the additional
term on the right-hand side,

div(F (ρ)Y ) = Y · ∇(F (ρ)) + F (ρ) div Y = F ′(ρ)Y · ∇ρ+ F (ρ) div Y,

so we conclude that

∂t div(ρY ) + v · ∇ div(ρY ) = −ρY · ∇ρ+ F ′(ρ)Y · ∇ρ+ F (ρ) div Y. (8.6)

Then, since div(ρY ) = Y · ∇ρ+ ρdiv Y , we have

∂t div(ρY ) + v · ∇ div(ρY )

= ∂t(Y · ∇ρ) + ρ(∂t div Y + v · ∇ div Y ) + (∂tρ+ v · ∇ρ) div Y + v · ∇(Y · ∇ρ)

= ∂t(Y · ∇ρ) + v · ∇(Y · ∇ρ)− ρY · ∇ρ+ F (ρ) div Y,

where we used (1.1)1 and (8.3). By (8.6) it follows that

∂t(Y · ∇ρ) + v · ∇(Y · ∇ρ) = F ′(ρ)Y · ∇ρ,

which is (8.4). �

Proposition 8.2. Assume that ρ0 is a suitable initial density as in Definition 2.2, let
(ρ0,n) and the sufficient family Y0 be given by Proposition 7.1, let (ρn) be the correspond-

ing C1(0, T ;C1,α(Rd))-solutions to (1.1, 1.4), and let Yn be the pushfoward of Y by the flow
map, ηn. If divY0 = Y0 · ∇ρ0,n = 0 on the open set W then divYn(t) = Yn · ∇ρn = 0 on
ηn(t,W ) for all t ∈ [0, T ]. Moreover,

‖Yn · ∇ρn(t)‖L∞ ≤ ‖Y0 · ∇ρ0‖L∞ e
C(T )t,

‖divYn‖L∞ ≤ ‖Y0 · ∇ρ0‖L∞ e
C(T )tt.

(8.7)

Proof. Fix x ∈W and let Y0 be one of the first d− 1 vector fields in any frame in Y0. Define

g(t) := Yn · ∇ρn(t, ηn(t, x)), h(t) := div Yn(t, ηn(t, x)), ρ(t) := ρn(t, ηn(t, x)),
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where Yn = Yn(t) is the pushforward of Y0 by the flow map, ηn. Then from (8.3) and (8.4)
we see that g(t), h(t) solve the ODEs,

ġ(t) = F ′(ρ(t))g(t), g(0) = Y0 · ∇ρ0,n(x),

ḣ(t) = −g(t), h(0) = div Y0(x).

Along flow lines, ρ is Lipschitz continuous (as we can see from (1.8)), so ρ is locally Lipschitz.
Also, since h(0) = 0 for all x ∈ Rd (by Proposition 7.1) and g(0) = 0 for x ∈W , we see that
Y · ∇ρ(t, x) = div Y (t, x) = 0 for x ∈ η(t,W ).

Since we assumed that F ′ is locally Lipschitz, we can integrate the equations for g then h
to obtain (after calculating that (log g(t))′ = F ′(ρ(t)) and using that h(0) ≡ 0 on Rd),

g(t) = g(0) exp

∫ t

0
F ′(ρ(s)) ds, h(t) = −

∫ t

0
g(s) ds.

Since ρ ∈ L∞([0, T ]× R2), |F ′(ρ(s))| ≤ C(T ). This gives the simple bounds,

|g(t)| ≤ eC(T )t |g(0)| , |h(t)| ≤ teC(T )t |g(0)| ,

from which, along with (v) of Proposition 7.1, (8.7) follows. �

Proposition 8.3, which we will apply in the proof of Theorem 2.6, gives estimates on the
propagation of local regularity of the density. Whereas in Proposition 8.2 we needed to work
with regular solutions to make sense of the pushforward of Y0 and to make sense of the term
Y ·∇ρ appearing in the transport equations, in Proposition 8.3, we need only the regularity of
a weak solution. Without, however, higher regularity of the flow map, such as that obtained
in Theorem 2.3, the bounds will all be infinite.

Proposition 8.3. Let ρ be a weak Lagrangian solution to (1.1, 1.4) with initial density ρ0,
as in Definition 1.1. Then for any open set W ⊆ Rd,

‖ρ(t)‖Cα(η(t,W )) ≤ ‖ρ0‖Cα(W ) e
C(T )t+αJ(t),

‖∇ρ(t)‖L∞(η(t,W ) ≤ ‖∇ρ0‖L∞(W ) e
C(T )t+J(t),

‖∇ρ(t)‖Cα(η(t,W ) ≤ ‖∇ρ0‖Cα(W ) e
C(T )t+J(t)

∥∥∇η−1(t)
∥∥
Cα(η(t,W ))

,

(8.8)

where J(t) :=
∫ t

0 ‖∇v(s)‖L∞ ds and C(T ) depends continuously on F , ‖ρ0‖L∞, and T .

Proof. Before proceeding further, observe that

‖∇η(t)‖L∞ ,
∥∥∇η−1(t)

∥∥
L∞
≤ eJ(t). (8.9)

The bound on the forward flow map follows directly from the integral form of (1.6),

η(t, x) = x+

∫ t

0
v(s, η(s, x)) ds, (8.10)

while the bound on the inverse flow map is derived later in Lemma 8.4.
Let

L(s, x) := ρ(s, η(s, x)).

Then (1.8) can be expressed in the form,

L(t, x) = ρ0(x) +

∫ t

0
F (L(s, x)) ds. (8.11)
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Applying Osgood’s lemma (see ([9, Lemma 5.2.1]), we see that∫ |L(t,x)|

|ρ0(x)|

dr

|F (r)|
≤ t.

This gives the finite time, T ∗, up to which L(t, x) remains bounded by some constant C(T ):
this is the origin of (1.10). That is, ‖L(t)‖L∞ = ‖ρ(t)‖L∞ ≤ C(T ), and there exists a bounded

E ⊆ (0, T )× Rd, such that

image(L) ⊆ E.

That E is bounded will be important when applying (3.2), which we do multiple times below.
Returning to (8.11), we can put the bound on ‖L(t)‖L∞ in the form

‖L(t)‖L∞ = ‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ e
C(T )t, (8.12)

though we have no effective method for calculating C(T ), which also depends upon ρ0, without
an explicit choice of F .

We now bound L(t) in Cα(W ) and C1+α(W ). So assume x ∈W . Then from (8.11),

‖L(t)‖Ċα(W ) ≤ ‖ρ0‖Ċα(W ) +

∫ t

0

∥∥F ′∥∥
L∞(E)

‖L(s)‖Ċα(W ) ds,

where we used (3.2). Thus, using also (8.12),

‖L(t)‖Cα(W ) ≤ ‖ρ0‖Cα(W ) e
C(T )t

follows from Grönwall’s lemma.
Similarly, applying ∇ to (8.11) gives

∇L(t, x) = ∇ρ0(x) +

∫ t

0
F ′(L(s, x))∇L(s, x) ds. (8.13)

Hence,

‖∇L(t)‖L∞(W ) ≤ ‖∇ρ0‖L∞(W ) +

∫ t

0

∥∥F ′∥∥
L∞(E)

‖∇L(s)‖L∞(W ) ds

and Grönwall’s lemma then gives

‖∇L(t)‖L∞(W ) ≤ ‖∇ρ0‖L∞(W ) e
Ct. (8.14)

We can also use (8.13) to bound the Cα norm. First, observe that by (3.2),∥∥F ′(L(s, x))
∥∥
Cα(W )

=
∥∥F ′(L(s, x))

∥∥
L∞

+
∥∥F ′(L(s, x))

∥∥
Ċα

≤ C(T ) +
∥∥F ′∥∥ ˙lip(E)

‖L(s)‖Ċα(W ) ≤ C(T ),

by our earlier bound on ‖L(t)‖Ċα(W ). Hence,

‖∇L(t)‖Cα(W ) ≤ ‖∇ρ0‖Cα(W ) +

∫ t

0

∥∥F ′(L(s, x))
∥∥
Cα(W )

‖∇L(s)‖Cα(W ) ds

≤ ‖∇ρ0‖Cα(W ) + C(T )

∫ t

0
‖∇L(s)‖Cα(W ) ds.

Then Grönwall’s lemma combined with (8.14) give

‖∇L(t)‖Cα(W ) ≤ ‖∇ρ0‖Cα(W ) e
C(T )t.
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Then (3.2) also gives

‖ρ(t)‖Ċα(η(t,W )) =
∥∥L(t, η−1(t, ·))

∥∥
Ċα(η(t,W ))

≤ ‖L(t)‖Ċα(η(t,W )) ‖∇η
−1(t)‖αL∞

≤ ‖ρ0‖Ċα(W ) e
C(T )t+αJ(t).

And ∇ρ(t) = ∇(L(t, η−1(t, x))) = (∇L)(t, η−1(t, x)) · ∇η−1(t, x). Thus,

‖∇ρ(t)‖L∞(η(t,W ) ≤ ‖∇L(t)‖L∞(W )

∥∥∇η−1(t)
∥∥
L∞(η(t,W ))

≤ ‖∇ρ0‖L∞(W ) e
C(T )t+J(t).

Because∥∥∇(L(t, η−1(t, ·)))
∥∥
Cα(η(t,W ))

≤
∥∥∇(L(t, η−1(t, ·)))

∥∥
L∞(η(t,W ))

+
∥∥∇(L(t, η−1(t, ·)))

∥∥
Ċα(η(t,W ))

≤ ‖∇ρ(t)‖L∞(η(t,W )) + ‖∇L(t)‖Cα(W ) ‖∇η
−1(t)‖αL∞ ,

we also have (with the bounds above),

‖∇ρ(t)‖Cα(η(t,W ) ≤
∥∥∇(L(t, η−1(t, ·)))

∥∥
Cα(W )

∥∥∇η−1(t)
∥∥
Cα(η(t,W ))

≤ ‖∇ρ0‖Cα(W ) e
C(T )t+J(t)

∥∥∇η−1(t)
∥∥
Cα(η(t,W ))

,

from which (8.8) follows. �

The following lemma gives estimates for the inverse flow map. As a general rule, the
bounds on spatial (though not temporal) regularity of an inverse flow map are the same as
those for the forward flow map, just more involved to derive for non-autonomous flows.

Lemma 8.4. Let η be the flow map on [0, T ]×Rd for a vector v with v,∇v ∈ L∞((0, T )×Rd).
Then ∥∥∇η−1(t)

∥∥
L∞
≤ exp

∫ t

0
‖∇v(τ)‖L∞ dτ. (8.15)

If, further, v(t) ∈ C1,α(η(t,W )) for some open W ⊆ Rd with a uniform bound over t ∈ [0, T ]
then ∥∥∇η−1(t)

∥∥
Cα(η(t,W )

≤ eeC(T )t
, (8.16)

where we have not been explicit about the constant C(T ).

Proof. Suppose that a particle moving under the flow map is at position x at time t. Let
µ(τ ; t, x) be the position of that same particle at time t− τ , where 0 ≤ τ ≤ t. Then

η−1(t, x) = µ(t; t, x), x = µ(0; t, x)

and

d

dτ
µ(τ ; t, x) = −v(t− τ, µ(τ ; t, x)).

By the fundamental theorem of calculus,

µ(s; t, x)− x =

∫ s

0

d

dτ
µ(τ ; t, x) dτ,

or,

µ(s; t, x) = x−
∫ s

0
v(t− τ, µ(τ ; t, x)) dτ.
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Taking the spatial gradient, we have

∇µ(s; t, x) = I −
∫ s

0
(∇v)(t− τ, µ(τ ; t, x))∇µ(τ ; t, x) dτ. (8.17)

Hence,

‖∇µ(s; t, ·)‖L∞ ≤ 1 +

∫ s

0
‖∇v(t− τ)‖L∞ ‖∇µ(τ ; t, ·)‖L∞ dτ.

It follows from Grönwall’s lemma that

‖∇µ(s; t, ·)‖L∞ ≤ exp

∫ s

0
‖∇v(t− τ)‖L∞ dτ (8.18)

for all s ∈ [0, t]. Setting s = t gives (8.15).
Now we apply (3.2) to (8.17), with x restricted to lie in η(t,W ), noting that µ(τ ; t, x) ∈

η(t− τ,W ). This gives

‖∇µ(s; t, x)‖Cα(η(t−s,W )) ≤ 1 +

∫ s

0

(
‖∇v(t− τ)‖L∞ + ‖∇v(t− τ)‖Ċα ‖∇µ(τ ; t, ·)‖αL∞

)
‖∇µ(τ ; t, ·)‖Cα(η(t−τ,W )) dτ

≤ 1 +

∫ s

0
(‖∇v(t− τ)‖Cα ‖∇µ(τ ; t, ·)‖αL∞) ‖∇µ(τ ; t, ·)‖Cα(η(t−τ,W )) dτ

≤ 1 + C(T )eCt
∫ s

0
‖∇µ(τ ; t, ·)‖Cα(η(t−τ,W )) dτ,

where we applied (8.18). Grönwall’s lemma gives

‖∇µ(s; t, x)‖Cα(η(t−s,W )) ≤ exp
(
C(T )eCts

)
,

and setting s = t gives (8.16). �

The following proposition will be used in the proof of Theorem 2.3 in Section 9.

Proposition 8.5. Let Y0 be a frame pushed forward to Y by the flow map for the solution
to (1.1, 1.4). Then

∂tYd + v · ∇Yd = −Yd · ∇v − ρYd.

Proof. Recall that be the definition of a frame, Yd(t) = ∧k<dYk(t). A direct computation
from our definition of the wedge product in Section 3 (using that ∇v is symmetric) gives

∂tYd + v · ∇Yd = −Yd · ∇v + (div v)Yd.

The results follows since div v = −ρ. (The special case when div v = 0 with (∇v)T in place
of ∇v appears in the proof of Proposition 4.1 of [11].) �

Proposition 8.6. Let φ be φ0 (purely) transported by the flow, ∂tφ+v ·∇φ = 0. Let Y be Y0

pushed forward according to (4.4) and let W0 = ∇φ0 and W = ∇φ. Assume that W0 ·Y0 = 0.
Then, W · Y = 0 for all time.

Proof. We have

∂t∇φ+∇(v · ∇φ) = 0.

But

(∇(v · ∇φ))i = ∂i(v
j∂jφ) = vj · ∂j∂iφ+ ∂iv

j∂jφ = v · ∇(∇φ)i + ((∇v)T∇φ)i

= (v · ∇∇φ)i + (∇v∇φ)i,
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since ∇v is symmetric. Hence,

∂t∇φ+ v · ∇∇φ = −∇v∇φ,

or

d

dt
(W (t, η(t, x))) = (∂tW + v · ∇W ) (t, η(t, x)) = − (W · ∇v) (t, η(t, x)).

Assume that Y is obtained from (4.4). Then, since,

d

dt
(Y (t, η(t, x))) = (∂tY + v · ∇Y ) (t, η(t, x)) = (Y · ∇v) (t, η(t, x)),

we have

d

dt
((W · Y )(t, η(t, x))) = W (t, η(t, x)) · d

dt
(Y (t, η(t, x))) + Y (t, η(t, x)) · d

dt
(W (t, η(t, x)))

= (W · (Y · ∇v)− Y · (W · ∇v)) (t, η(t, x)).

But, for two vector fields, Y and Z, we have

Y · (Z · ∇v)− Z · (Y · ∇v) = Y i(Zj∂jv
i)− Zj(Y i∂iv

j) = 0,

again using that ∇v is symmetric. Therefore,

d

dt
(W · Y )(t, η(t, x)) = 0.

We conclude that if W0 · Y0 = 0 then W · Y = 0 for all time. �

We will find Proposition 8.7 useful when changing variables using the flow map:

Proposition 8.7. Let ρ, η be as in Proposition 8.1. Then det∇η(t, x), the Jacobian deter-
minant of the map x→ η(t, x) (which is positive), is bounded by

exp

(
−
∫ t

0
|ρ(s, η(s, x))| ds

)
≤ det∇η(t, x) ≤ exp

(∫ t

0
|ρ(s, η(s, x)| ds

)
.

The same bound applies to det∇η−1(t, x).

Proof. Fix x ∈ Rd and let f(t) = det∇η(t, x), ρ(t) = ρ(t, η(t, x)). Then (see, for instance,
page 3 of [9])

f ′(t) = div v(t, η(t, x))f(t) = −ρ(t)f(t).

It follows that (log f(t))′ = −ρ(t), so since also f(0) = 1,

log f(t) = −
∫ t

0
ρ(s) ds =⇒ f(t) = exp

(
−
∫ t

0
ρ(s) ds

)
.

This gives the bounds on det∇η(t, x). Since η(·, x) is a diffeomorphism, the same bounds
apply on its inverse. �
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9. Propagation of striated regularity: proof of Theorem 2.3

It would be quite convenient if we could implement the proof of Theorem 2.3 using the weak
solution provided by Theorem 1.2 directly. The problem is that to define the pushforward
of Y0, we need v to at least be Lipschitz so that ∇η is defined (and bounded), whereas we
only know a priori that the weak solution has a log-Lipschitz v. Beyond this, we need higher
regularity than v Lipschitz to justify the transport equations in (8.3) and (8.4). Hence, we
will need to use a sequence of approximating regular solutions, (ρn), and, as part of the proof,
show that there is a uniform bound on (∇vn) in L∞((0, T )×Rd) so that for the limiting weak
solution, ∇v will lie in L∞((0, T )× Rd).

This is much as in the proof of the propagation of striated regularity of the vorticity for the
2D Euler equations following any of the existing approaches in [7, 8, 20, 1]. A key difference
arises, however, in the transport equations in (8.3) and (8.4): for the 2D Euler equations
these are pure transport, whereas we must deal with a troublesome right-hand side. Also,
proof that the sequence of approximating solutions converges to a weak solution to (1.1,
1.4) will require more work than for the Euler equations because the velocity fields are not
divergence-free.

We will first establish in Proposition 9.1 a series of estimates for solutions to (1.1, 1.4)
with the initial data regularized as in Proposition 7.1. These estimates will control Y and
Y · ∇v in terms of the initial data and the quantity,

V (t) := ‖ρ0‖L∞ +

∥∥∥∥p. v.

∫
Rd
∇∇Φ(x− y)ρ(y) dy

∥∥∥∥
L∞x (Rd)

.

The key part of the proof of Proposition 9.1 lies in establishing a useful bound on V (t) itself
so that we can ultimately close the estimates.

We give the proof of Proposition 9.1 in Section 9.1, using it to prove Theorem 2.3 in
Section 9.2. In Section 9.3 we give the proof of Corollary 2.4.

9.1. Uniform estimates on approximating solutions. In this subsection we establish
Proposition 9.1, a series of uniform estimates for the approximating regular solutions to
(1.1, 1.4). The estimates in (9.1) through (9.4) are based primarily upon the gradient flow
structure of the transport equations in Section 8. Obtaining the estimates in (9.4) and (9.5)
will consume most of our effort.

Proposition 9.1. Let (ρn) be the sequence of approximating C1,α-solutions to (1.1, 1.4) for
the suitable initial density ρ0, as in Proposition 8.2. Let vn, ηn, and Yn the corresponding
velocity field, flow map, and pushforward of Y0. Define,

Vn(t) := ‖ρn‖L∞ +

∥∥∥∥p. v.

∫
Rd
∇∇Φ(x− y)ρn(y) dy

∥∥∥∥
L∞x (Rd)

.

For all sufficiently large n, the following estimates hold for all t ∈ [0, T ]:

‖∇vn(t)‖L∞ ≤ Vn(t), (9.1)

‖Yn(t)‖L∞ ≤ ‖Y0‖L∞ e
∫ t
0 Vn(s) ds, (9.2)

‖Yn · ∇vn(t)‖Cα ≤ C(T ) (Vn(t) ‖Yn(t)‖Cα + 1) , (9.3)

‖Yn(t)‖Cα ≤ C(T ) ‖Y0‖Cα e
∫ t
0 C(T )Vn(s) ds, (9.4)
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where C(T ) depends continuously upon F , ‖ρ0‖L∞ and T . Moreover,

Vn(t) ≤ C(T )(1− log r) + C(T )eC(T )
∫ t
0 Vn(s) dsrα for any r ∈ (0, 1]. (9.5)

Proof. Because ‖ρ0,n‖L∞ ≤ ‖ρ0‖L∞ , we see that all solutions will exist on the time interval
[0, T ]. It also follows that (vn) is uniformly bounded in the log-Lipschitz norm.

To streamline notation, we drop the subscript n throughout the rest of this subsection.
In what follows, Y will always be a vector field among the first d − 1 vector fields of a

frame in Y. Except in the proof of (9.5), this frame will be arbitrary. Taking the supremum
of the bounds over all the frames gives the final estimates expressed in terms of Y.

Equation (9.1) follows immediately from Proposition 6.1. Equation (9.2) follows from (8.2)
and Grönwall’s Lemma. By Corollary 6.3,

‖Y · ∇v(t)‖Cα ≤ CV (t) ‖Y ‖Cα + ‖div(ρY )‖L∞
≤ CV (t) ‖Y ‖Cα + ‖Y · ∇ρ‖L∞ + ‖ρ div Y ‖L∞ ≤ CV (t) ‖Y ‖Cα + C(T ),

where we used (8.7). This gives (9.3).
The derivations of (9.4) and (9.5) are more involved. We argue much as in Sections 10.2

and 10.3 of [1], which follows an argument in [20], but the differences with [1] are too subtle
to merely outline, so we include their complete derivations.

(9.4): Bound on Y in Cα. We write (8.2)1 as

d

dt
Y (t, η(t, x)) = (Y · ∇v)(t, η(t, x)),

and integrate in time, to obtain

Y (t, η(t, x)) = Y0(x) +

∫ t

0
(Y · ∇v)(s, η(s, x)) ds.

This leads to the simple bound,

‖Y (t)‖L∞ ≤ ‖Y0‖L∞ +

∫ t

0
‖(Y · ∇v)(s)‖L∞ ds. (9.6)

Using the inverse flow map, we also have

Y (t, x) = Y0(η−1(t, x)) +

∫ t

0
(Y · ∇v)(s, η(s, η−1(t, x))) ds. (9.7)

First, let us estimate ‖∇(η(s, η−1(t, x)))‖L∞ . We start with

∂sη(s, η−1(t, x)) = v(s, η(s, η−1(t, x))).

Then

∂s∇
(
η(s, η−1(t, x))

)
= ∇v(s, η(s, η−1(t, x)))∇(η(s, η−1(t, x))).

Integrating in time and using ∇(η(s, η−1(t, x)))|s=t = I, the identity matrix, we have

∇
(
η(s, η−1(t, x))

)
= I −

∫ t

s
∇v(τ, η(τ, η−1(t, x)))∇(η(τ, η−1(t, x))) dτ.

By Grönwall’s lemma, then,∥∥∇(η(s, η−1(t, x)))
∥∥
L∞
≤ exp

∫ t

s
‖∇v(τ)‖L∞ dτ ≤ exp

∫ t

s
V (τ) dτ.
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Thus, applying (3.2) and (9.3) to (9.7), and using (3.2) and (8.9), and adding the bound
in (9.6), we see that

‖Y (t)‖Cα ≤ ‖Y0‖Cα
∥∥∇η−1(t)

∥∥α
L∞

+

∫ t

0
‖(Y · ∇v)(s)‖Cα

∥∥∇η(s, η−1(t, x))
∥∥α
L∞x

ds

≤ ‖Y0‖Cα exp

(
α

∫ t

0
V (τ) dτ

)
+ C(T )

∫ t

0
(V (s) ‖Y (s)‖Cα + 1) exp

(
α

∫ t

s
V (τ) dτ

)
ds.

Letting

y(t) = ‖Y (t)‖Cα exp

(
−
∫ t

0
V (τ) dτ

)
,

we see that

y(t) ≤ ‖Y0‖Cα + C(T ) exp

(
−
∫ t

0
V (τ) dτ

)∫ t

0

(
V (s) y(s) exp

∫ s

0
V (τ) dτ + 1

)
exp

(
α

∫ t

s
V (τ) dτ

)
ds

≤ ‖Y0‖Cα + C(T ) exp

(
−
∫ t

0
V (τ) dτ

)∫ t

0
V (s) y(s) exp

∫ t

0
V (τ) dτ ds

+ C(T ) exp

(
−
∫ t

0
V (τ) dτ

)∫ t

0
exp

(
α

∫ t

s
V (τ) dτ

)
ds

≤ ‖Y0‖Cα + C(T )

∫ t

0
V (s) y(s) ds+ C(T ) ≤ C(T ) + C(T )

∫ t

0
V (s) y(s) ds.

It follows from Grönwall’s lemma that y(t) ≤ ‖Y0‖Cα exp
(
C(T )

∫ t
0 V (s) ds

)
and hence that

‖Y (t)‖Cα ≤ ‖Y0‖Cα exp

(
C(T )

∫ t

0
V (s) ds

)
,

which is (9.4).

(9.5): Bound on V . Fix x ∈ Rd. We start by splitting the principal value integral part of
∇v (as in Proposition 6.1) into two parts as

− p. v.

∫
∇∇Φ(x− y)ρ(y) dy

= −p. v.

∫
∇(ar∇Φ)(x− y)ρ(y) dy − p. v.

∫
∇((1− ar)∇Φ)(x− y)ρ(y) dy,

(9.8)

where r ∈ (0, 1] is arbitrary.
On the support of ∇(1− ar) = −∇ar, |x− y| ≤ 2r, so

|∇((1− ar)∇Φ)| ≤ |(1− ar)∇∇Φ|+ |(−∇ar)⊗∇Φ)| ≤ C |x− y|−d . (9.9)
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Hence, one term in (9.8) is easily bounded, using only that ρ(t) ∈ L1 ∩ L∞, by∣∣∣∣p. v. ∫ ∇((1− ar)∇Φ)(x− y)ρ(t, y) dy

∣∣∣∣ ≤ C ∫
BCr (x)

|x− y|−d |ρ(t, y)| dy

≤ C
∫ 1

r

‖ρ(t)‖L∞
λd

λd−1 dλ+ C‖ |x− ·|−d ‖L∞(BC1 (x)) ‖ρ0‖L1

≤ −C(T ) log r ‖ρ0‖L∞ + C(T ) ‖ρ0‖L1 ≤ C(T )(− log r + 1).

(9.10)

We used (1.10) to obtain the constant, C(T ).
For the other term in (9.8), letting µrh be as in Definition 3.2, we can write∣∣∣∣p. v.∫ ∇(ar∇Φ)(x− y)ρ(t, y) dy

∣∣∣∣ =

∣∣∣∣ limh→0
∇(µhr∇Φ) ∗ ρ(t, x)

∣∣∣∣ = lim
h→0
|B| ,

where

B(t, x) := ∇ [(µrh∇Φ) ∗ ρ] (x).

Because Y0 is a sufficient family, there exists a frame Y0 in Y0 so that |Y0,d(x)| ≥ I(Y0)/2.
Applying Lemma 5.1 to this frame gives, at (t, x),

|B| ≤ P (Y1, . . . , Yd−1)

|Yd|4
d−1∑
i=j

|BYj |+ trB,

where P has degree nd. Moreover, from Proposition 8.5, it follows, using (reverse) Grönwall’s
Lemma, that

|Yd(t, η(t, x))| ≥ |Y0,d(x)| e−
∫ t
0 (V (s)+‖ρ(s)‖L∞ )ds ≥ I(Y0)e−t‖ρ0‖L∞e−

∫ t
0 V (s) ds. (9.11)

In light of the bound in (9.2), we have (recall from Lemma 5.1 that nd = 4d− 5)

|B| ≤ C
‖Y(t)‖ndL∞
I(Y0)4

e2
∫ t
0 (V (s)+‖ρ(s)‖L∞ )ds

d−1∑
i=j

|BYj |+ |trB|

≤ C(T )e(nd+4)
∫ t
0 V (s) ds

d−1∑
i=j

|BYj |+ |trB| .

(9.12)

We first compute trB. We have,

trB =

d∑
j=1

[∂jµrh∂jΦ] ∗ ρ+ [µrh∆Φ] ∗ ρ =

d∑
j=1

[∂jµrh∂jΦ] ∗ ρ,

using ∆Φ = δ0 and µrh(0) = 0 to remove the one term. By (3.3), we have for j = 1, 2, · · · , d,

|[∂jµrh∂jΦ] ∗ ρ| ≤ C

r

∫
r<|x−y|<2r

|ρ(t, y)|
|x− y|d−1

dy +
C

h

∫
h<|x−y|<2h

|ρ(t, y)|
|x− y|d−1

dy

≤ C

r

∫ 2r

r

‖ρ(t)‖L∞
λd−1

λd−1 dλ+
C

h

∫ 2h

h

‖ρ(t)‖L∞
λd−1

λd−1 dλ

= C ‖ρ(t)‖L∞ ≤ C(T ),

where we used (1.10). Thus,

lim
h→0
|trB| ≤ C(T ).
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We next estimate |BYj |. Because

Bk
l = ∂l [µrh∂kΦ] ∗ ρ,

we have, for j < d,

(BYj)
k = Bk

l Y
l
j = (∂l [µrh∂kΦ] ∗ ρ)Y l

j

= (∂l [µrh∂kΦ] ∗ ρ)Y l
j − ∂l [µrh∂kΦ] ∗ (ρY l

j ) + (µrh∂kΦ) ∗ div(ρYj)

=:

d∑
l=1

dkl + (µrh∂kΦ) ∗ div(ρYj).

By Lemma 3.3,

|dkl | =

∣∣∣∣∣
[∫
∇[µrh∇Φ](x− y)(Yj(x)− Yj(y))ρ(y) dy

]k
l

∣∣∣∣∣ ≤ C ‖Yj(t)‖Ċα ‖ρ(t)‖L∞ r
α,

and using (1.10) and (9.4), we see that

d∑
l=1

lim
h→0
|dkl | ≤ C ‖Yj(t)‖Cα ‖ρ0‖L∞ r

α ≤ CeC(T )
∫ t
0 V (s) dsrα.

Also by Lemma 3.3 along with (8.7),

lim
h→0
|(µrh∂kΦ) ∗ div(ρYj)| = lim

h→0

∣∣∣∣∫
Rd

(µrh∇Φ)(x− y) div(ρYj)(y) dy

∣∣∣∣
≤ C ‖div(ρYj)‖L∞ r

α ≤ C ‖Y0 · ∇ρ0‖L∞ e
C(T )trα ≤ C(T )rα.

Thus, returning to (9.12), and noting that our bounds are independent of h, we have (now
including the explicit dependence of B on t and x),

lim
h→0
|B(t, x)| ≤ C(T )rαeC(T )

∫ t
0 V (s) ds + C(T ).

Combined with (9.10), which applies for all x ∈ Rd, we obtain,

V (t) ≤ C(1− log r) ‖ρ0‖L1∩L∞ + sup
Y0∈Y0

sup
x∈Rd

lim
h→0
|B(t, x)|

≤ C(T )(1− log r) + C(T )eC(T )
∫ t
0 V (s) dsrα,

which is (9.5). �

9.2. Proof of Theorem 2.3. To prove Theorem 2.3, we will first close the bound on Vn(t)
as in Section 10.4 of [1] to obtain a uniform bound on it, and so on ‖∇vn‖L∞ . We will then
show that our sequence of approximate solutions converges to a solution to the aggregation
equation having the same uniform bounds.

Closing the bounds. Setting

r = rn = exp

(
−C(T )

α

∫ t

0
Vn(s) ds

)
,

we have

1− log r = 1 +
C(T )

α

∫ t

0
Vn(s) ds, rα = exp

(
−C(T )α

∫ t

0
Vn(s) ds

)
.
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The bound in (9.5) thus yields the estimate,

Vn(t) ≤ C(T ) +
C(T )

α

∫ t

0
Vn(s) ds. (9.13)

By Grönwall’s lemma, we conclude that

‖∇vn(t)‖L∞ ≤ Vn(t) ≤ C(T )eC(T )α−1t

so also, by virtue of (9.4),

‖Yn(t)‖Cα ≤ C(T ) exp
(
C(T )eC(T )α−1t

)
. (9.14)

Convergence to a solution. What is left to show is that the sequence of regular solutions
(ρn) converges to a weak solution ρ and that key bounds in Proposition 9.1 continue to hold
for the limiting solution. In proving this, we adapt the corresponding arguments for the 2D
Euler equations, combining aspects of the arguments in Section 8.2 of [17], pages 105-106 of
[9], and Section 10.5 of [1]. This consists of the following steps:

(i) Prove that the sequence of forward flow maps (ηn) converges to a function η and that
the sequence of inverse flow maps (η−1

n ) converges to η−1 in L∞([0, T ]× Rd).
(ii) Define ρ(t, x) to satisfy (1.8) and show that ρn → ρ in L∞([0, T ];Lp(Rd)) for any

p ∈ [1,∞).
(iii) Define v = −∇Φ ∗ ρ and show that η is, in fact, the flow map for v. Hence, ρ is a

Lagrangian solution to (1.1, 1.4).
(iv) Show that ∇v ∈ L∞([0, T ]× Rd), giving (a) in Theorem 2.3.
(v) Show that Y ∈ L∞(0, T ;Cα(Rd)).
(vi) Show that ρ is also a weak Eulerian solution.
(vii) Show (b) and (c) in Theorem 2.3.

(i). By (8.9),

‖∇ηn(t)‖L∞ ,
∥∥∇η−1

n (t)
∥∥
L∞
≤ J(t) ≤ eVn(t) ≤ C(T ).

Moreover, for all t1, t2 ∈ [0, T ],

|ηn(t1, x)− ηn(t2, x)| ≤ ‖vn‖L∞([0,T ]×Rd) |t1 − t2| ≤ C(T ) |t1 − t2| .

That is, the sequence (ηn) is Lipschitz-continuous in time and space uniformly in n, so the
Arzelà-Ascoli theorem shows that a subsequence converges uniformly on compact subsets to
a Lipschitz-continuous in time and space function, η. The analogous argument gives the same
type of convergence for the inverse flow maps η−1

n to η−1 (though with lower time regularity,
an issue that will not affect us). With the compact support of the initial data it easy to see
that a subsequence converges in L∞([0, T ]×Rd). Once we prove that in the limit we obtain
an Eulerian solution to (1.1, 1.4), for which we have uniqueneness, it will follow that these
convergences are for the full sequence; for now, we will simply reindex as needed to avoid
additional notation.

(ii). For any fixed x ∈ Rd, let ρ(t, x) be the solution to the single-dimensional ODE,
∂tρ(t, x) = F (ρ(t, x)), ρ(0, x) = ρ0(x) on [0, T ], and define ρ on [0, T ] × Rd by ρ(t, x) =



28 HANTAEK BAE AND JAMES P KELLIHER

ρ(t, η−1(t, x)). It follows that (1.8) holds. Therefore,

‖ρ(t, η(t, ·))− ρn(t, ηn(t, ·))‖ ≤ ‖ρ0 − ρ0,n‖+

∫ t

0
‖F (ρ(s, η(s, ·)))− F (ρn(s, ηn(s, ·)))‖ ds

≤ ‖ρ0 − ρ0,n‖+ C(T )

∫ t

0
‖ρ(s, η(s, ·))− ρn(s, ηn(s, ·))‖ ds,

where we note that ‖ · ‖ is the L2 norm and we used that ρ(η(s, ·)) and ρn(s, ηn(s, ·)) are
supported in some fixed compact set for all s ∈ [0, T ] because of the compact support of
the initial data and the uniform bound on (ρn) in L∞([0, T ] × Rd). But ‖ρ0 − ρ0,n‖ → 0 as
n→∞ by (ii) of Proposition 7.1 with p = 2, so Grönwall’s lemma gives that

‖ρ(t, η(t, ·))− ρn(t, ηn(t, ·))‖ ≤ ‖ρ0 − ρ0,n‖ eC(T )t → 0. (9.15)

A similar argument applied to the inverse flow map gives

‖ρ(t)− ρn(t)‖ ≤
∥∥ρ0(η−1(t, ·)− ρ0,n(η−1

n (t, ·))
∥∥

+

∫ t

0

∥∥F (ρ(s, η(s, η−1(s, ·)))
)
− F

(
ρn(s, ηn(s, η−1

n (s, ·)))
)∥∥ ds. (9.16)

Now, ∥∥ρ0(η−1(t, ·)− ρ0,n(η−1
n (t, ·))

∥∥
≤
∥∥ρ0(η−1(t, ·)− ρ0(η−1

n (t, ·))
∥∥+

∥∥ρ0(η−1
n (t, ·)− ρ0,n(η−1

n (t, ·))
∥∥ .

The first term vanishes in the limit by Lemma 9.3, below, the second vanishes because
ρ0,n → ρ0 in L2 and we have a uniform bound on the Jacobian, det∇η−1

n , by Proposition 8.7.
For the time integral in (9.16), we have∥∥F (ρ(s, η(s, η−1(s, ·)))

)
− F

(
ρn(s, ηn(s, η−1

n (s, ·)))
)∥∥

≤ C(T )
∥∥ρ(s, η(s, η−1(s, ·)))− ρn(s, ηn(s, η−1

n (s, ·)))
∥∥

≤ C(T )
∥∥ρ(s, η(s, η−1

n (s, ·)))− ρn(s, ηn(s, η−1
n (s, ·)))

∥∥
+ C(T )

∥∥ρ(s, η(s, η−1(s, ·)))− ρ(s, η(s, η−1
n (s, ·)))

∥∥ .
Again using that the Jacobian for the inverse map η−1

n is bounded, we have∥∥ρ(s, η(s, η−1
n (s, ·)))− ρn(s, ηn(s, η−1

n (s, ·)))
∥∥ ≤ C(T ) ‖ρ(s, η(s, ·))− ρn(s, ηn(s, ·))‖ ,

which vanishes in the limit by (9.15). Letting f(s, x) = ρ(s, η(s, x)), we can write,∥∥ρ(s, η(s, η−1(s, ·)))− ρ(s, η(s, η−1
n (s, ·)))

∥∥ =
∥∥f(η−1(s, ·))− f(η−1

n (s, ·))
∥∥ ,

which vanishes in the limit by Lemma 9.3. We conclude from the dominated convergence
theorem that the time integral in (9.16) vanishes in the limit. Noting that the arguments
above using the L2 norm apply for any p ∈ [1,∞), we see that

ρn(t)→ ρ(t) in L∞(0, T ;Lp(Rd)) for any p ∈ [1,∞). (9.17)

(iii). Define v = −∇Φ ∗ ρ. Then since ρn(t) and ρ(t) are compactly supported in some
common K(T ) ⊆ Rd for all t ∈ [0, T ], we have, for any p ∈ (2,∞) and p′ = p/(p− 1),

‖vn − v‖L∞([0,T ];L∞(Rd)) ≤ ‖∇Φ‖Lp′ (2K(T )) ‖ρn − ρ‖L∞(0,T ;Lp(Rd)) → 0. (9.18)
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We see in the same way that (vn) is uniformly bounded in L∞([0, T ] × Rd); hence, we can
apply the dominated convergence theorem to give, for any (t, x) ∈ [0, T ]× Rd,

η(t, x)− x = lim
n→∞

(ηn(t, x)− x) = lim
n→∞

∫ t

0
vn(s, ηn(s, x)) ds =

∫ t

0
lim
n→∞

vn(s, ηn(s, x)) ds.

But,

|vn(s, ηn(s, x))− v(s, η(s, x))|
≤ |vn(s, ηn(s, x))− v(s, ηn(s, x))|+ |v(s, ηn(s, x))− v(s, η(s, x))|
≤ ‖vn(s)− v(s)‖L∞ + |v(s, ηn(s, x))− v(s, η(s, x))| .

The first term on the right vanishes by (9.18); the second vanishes because v has a log-
Lipschitz modulus of continuity and ηn → η in L∞([0, T ] × Rd). In the limit, then, we see
that

η(t, x)− x =

∫ t

0
v(s, η(s, x)) ds.

We conclude that η is the flow map for v and hence ρ is a Lagrangian solution to (1.1, 1.4).

(iv). Using the Arzelà-Ascoli theorem as in (i), we know that for all t ∈ [0, T ] the sequence
(vn) converges uniformly on compact subsets to a Lipschitz-continuous vector field. It follows
from (iii) and the uniqueness of limits that that limit is v(t); hence, ∇v ∈ L∞([0, T ]× Rd).

(v). Let Y0 = Y
(j)

0,k , k < d, be any vector field from among the first d − 1 vector fields in a

frame of Y0. We can write (8.1) in the form, Y0 · ∇ηn = Yn ◦ ηn. Then by (8.9) and (9.4)
with (3.2),

‖Y0 · ∇ηn‖Cα(Rd) ≤ ‖Yn‖Cα(Rd) ‖∇ηn‖
α
L∞(Rd) ≤ C(T ) ‖Y0‖Cα exp

(
C(T )

∫ t

0
Vn(s) ds

)
,

so Y0 · ∇ηn is uniformly bounded in Cα(Rd). But for any compact subset K of Rd, Cα(K)
is compactly embedded in Cβ(K) for all β < α so a subsequence of (Y0 · ∇ηn(t)) converges
in Cβ(K) to some fK(t) for all β < α. Letting Kn be the closed ball of radius n centered at
the origin and making a diagonolization argument, we can obtain a function f(t) ∈ Cα(Rd)
for which a subsequence of (Y0 · ∇ηn(t)) converges in Cβloc(R

d) to f(t) for all β < α.
To show that f(t) = Y0 · ∇η(t), we need only show convergence of Y0 · ∇ηn(t)→ Y0 · ∇η(t)

in some weaker sense. Let ϕ ∈ C∞c (Rd). As in (2.4) (noting that Y (t),div Y (t) ∈ Cα),

(Y0 · ∇ηn(t), ϕ) = −(ηn(t),div(ϕY0))→ −(η(t),div(ϕY0)) = (Y0 · ∇η(t), ϕ), (9.19)

by the strong convergence of ηn to η we established earlier. Hence, Y0 · ∇ηn(t)→ Y0 · ∇η(t)
as distributions, so we can conclude that f(t) = Y0 · ∇η(t). Since f(t) ∈ Cα(Rd), we see that

Y (t) = (Y0 · ∇η) ◦ η−1 = f(t) ◦ η−1

lies in Cα(Rd) by (3.2).

(vi). That ρ is a weak Eulerian solution to (1.1, 1.4) as in Definition 1.3 follows easily from
the convergences we proved of the sequences (ρn) and (vn).
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(vii). Now let ψj(t) be ψj transported by the flow map. Because ψj(t, x) = ψj(0)(η−1(t, x)),
we have ‖ψj(t)‖L∞ = ‖ψj(0)‖L∞ . Taking the gradient of the transport equation, ∂tψj + v ·
∇ψj = 0, we have

∂t∇ψj +∇(v · ∇ψj) = 0.

(Note that we have assumed insufficient regularity on ψj for the second term here. We
could proceed either by using the sequence of approximating flow maps as we did above,
or by making a separate approximation argument. For simplicity, however, we present this
somewhat formal approach.) But

(∇(v · ∇ψj))i = ∂i(v
k∂kψj) = vk∂k∂iψj + ∂iv

k∂kψj = v · ∇(∇ψj)i + ((∇v)T∇ψj)i

= (v · ∇∇ψj)i + (∇v∇ψj)i,

since ∇v is symmetric. Hence,

∂t∇ψj + v · ∇∇ψj = −∇v∇ψj , (9.20)

which we can rewrite as

∇ψj(t, x) = ∇ψj(0, η−1(t, x))−
∫ t

0
(∇v∇ψj)(s, η(s, η−1(t, x))) ds.

Therefore,

‖∇ψj(t)‖L∞ ≤ ‖∇ψj(0)‖L∞ +

∫ t

0
‖∇v(s)‖L∞ ‖∇ψj(s)‖L∞ ds.

Applying Grönwall’s lemma gives (2.1).
Noting that the level sets of both ρ0 and ψj are transported by the flow map, we see

that ψj(t) remains level-set-compatible to ρ(t) on the interior of suppψj(t). Finally, note

that Zj ∈ L∞(0, T ;Cα(Rd)) and is non-vanishing, which follow from Proposition 8.5 since

Zj = Yd,j and each frame lies in Cα(Rd). Moreover, by Proposition 8.6, Zj is parallel to
∇ψj(t) for all t ∈ [0, T ]. Therefore, we see that the level sets of ψj(t) retain their C1,α

regularity �

Remark 9.2. It follows, much as in the proof of (v) above, that Y · ∇v ∈ Cα(Rd).

In the proof above of Theorem 2.3, we used Lemma 9.3, a version of continuity of the Lp

norm with respect to translation.

Lemma 9.3. Let f ∈ Lp(Rd), p ∈ [1,∞), be compactly supported, let (gn) be a sequence of
bounded homeomorphisms on Rd, and let g be a bounded homeomorphism on Rd. Assume
that gn → g uniformly on compact subsets of Rd. Then

f ◦ gn → f ◦ g in Lp(Rd) as n→∞.

Proof. This is a simple adaptation of the classical proof in which gn is translation and g is
the identity. See, for instance, Theorem 8.19 p. 134-135 of [21]. Or see Lemma 8.2 of [15] for
an explicit proof. �

9.3. Proof of Corollary 2.4. Apply Corollary 7.2 to Theorem 2.3. Since each Zj(t) is
parallel to ∇ψj(t), each is normal to the boundary; because Zj(t) ∈ Cα it follows that ∂Ω(t)
is C1,α. �
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10. Removability of singularities: proof of Theorem 2.5

We establish in this section the higher regularity of the corrected velocity gradient, construct-
ing the matrix A of Theorem 2.5.

Proof of Theorem 2.5. Let Y0 be the sufficient family given by Proposition 7.1 with Y
its pushforward constructed in the proof of Theorem 2.3. First, we argue locally. Let Y =
(Y1, . . . , Yd) be any frame in Y for which |Yd| > I(Y)/2 on some nonempty open Ω ⊆ Rd.
Define

A := − 1

|Yd|2
Yd ⊗ Yd = −Ŷd ⊗ Ŷd on Ω, (10.1)

where Ŷd = Yd/|Yd|, recalling that Yd = ∧k<dYk.
For all i, k,

[(Yd ⊗ Yd)Yk]i = Y i
dY

j
d Y

j
k = Y i

d (Yd · Yk) = δdkY
i
d |Yd|

2 ,

so

AYk = 0 for k < d, AYd = −Yd.
For k < d, then,

(∇v − ρA)Yk = ∇vYk − ρAYk = ∇vYk ∈ Cα,
since ∇vYk ∈ Cα as noted in Remark 9.2. Because trA = −1,

tr(∇v − ρA) = div v − ρ trA = −ρ(1 + trA) = 0.

Since ∇v−ρA is symmetric and traceless, it follows from Lemma 5.2 that ∇v−ρA ∈ Cα(Ω).
The result then follows by using a partition of unity and the compact support of ρ0 to

combine each local version of A. �

Remark 10.1. Because Y
(j)
d is the wedge product of d − 1 vector fields lying in Cα, it also

lies in Cα. Nonetheless, if u is any nonvanishing vector field parallel to Yd on Uj, even
a highly irregular one, then we see from (10.1) that Aj = −û ⊗ û, where û = u/ |u|. In
particular, transporting ψj to give ψj(t) as in Theorem 2.3, we can use u = ∇ψj locally, so

A = −∇̂ψj ⊗ ∇̂ψj, even though ∇ψj(t) is only in L∞.

Proof of Theorem 2.6. The result follows from (8.8)1 for k = 0 and the bound on J(t)
that follows from the proof of Theorem 2.3 (or follows easily from (a) of its statement).

Now assume k = 1. By Theorem 2.5, ∇v − ρA ∈ Cα(η(t,W )). But A ∈ Cα(Rd) and
ρ ∈ Cα(η(t,W )) by the k = 0 result. We conclude that ∇v ∈ Cα(η(t,W )) for all t ∈ [0, T ].
The result then follows from (8.8)3 and Lemma 8.4. �

11. Patch boundary regularity: comparison to [3]

We now give a brief explanation of how Corollary 2.4 is established in [3] then compare it
to our approach.

The authors of [3] first make the transformation,

s := − 1

T
log

(
1− t

T

)
, ρ(s, x) := T (T − t) ρ(t, x), v(s, x) := T (T − t) v(t, x).

Relabeling to return to t, ρ, v, we obtain (for F (ρ) = ρ2), in place of (1.1, 1.4),

∂tρ+ v · ∇ρ = ρ(ρ− T ), v = −∇Φ ∗ ρ, ρ(0) = ρ0.
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Hence, F (ρ) = ρ2 is transformed to F (ρ) = ρ(ρ−T ), the negative of the logistic map, without
changing anything else. It is easy to see that if 0 ≤ ρ0 ≤ T then 0 ≤ ρ(t) ≤ T for all t ∈ [0, T ).
Moreover, when ρ0 = 1Ω, since T ∗ = 1, we can set T = 1, and it is easy to see that the
forcing vanishes for all t ∈ [0, T ). Hence, for the special case of patch data, the density is
purely transported in the transformed variables. All further arguments in [3] apply then to
∂tρ+ v · ∇ρ = 0. Or, in our notation, the authors treat (1.1, 1.4) in the special case, F ≡ 0.

Now, even though ψj(0) ∈ C1,α(Rd), it is clear from (9.20) that we cannot propagate more
than the Lipschitz regularity of ψj . The authors of [3] get around this difficulty by evolving
each ψj(0) to obtain the function φ(t) with the nonsingular forcing term −φ1Ωt = −φρ:

∂tφ+ v · ∇φ = −φρ, φ(0) = φ0 := ψj(0).

Here, φ0 defines one component of ∂Ω, where it vanishes and has non-vanishing gradient.
Setting Z = ∇φ, and using that φ∇ρ ≡ 0, a calculation like that in (9.20) gives

∂tZ + v · ∇Z = −∇vZ − ρZ. (11.1)

A priori, we only know that Z(t) ∈ L∞, just as with ∇ψj of Theorem 2.3. But the term
−ρZ, in effect, cancels the term ∇Φ ∗ div(ρZ) appearing in Corollary 6.3. Hence,

∂tZ(t, x) + (v · ∇Z)(t, x) =

∫
Ωt

∇2φ(x− y) (Z(t, x)− Z(y, t)) dy, x ∈ Rd,

which implies that

‖Z(t)‖Cα ≤ ‖∇φ0‖Cα exp

(
C

∫ t

0
(1 + ‖∇v(s)‖L∞) ds

)
.

This gives the C1,α regularity of the patch boundary.
In light of (2.2) and Proposition 8.5, we see that the authors of [3] are using the last vector

field in a frame without ever employing the first d− 1 vector fields. They are able to do this
because they can use the transport properties of φ to explicitly solve for what we call Z (in
terms of the flow map) inside and outside Ωt and ultimately show that it has higher regularity
in the normal direction than at first appears. It is critical in their argument, however, that φ
vanish on ∂Ω, thereby eliminating the singularity that would otherwise be in −∇(φρ). Their
approach could be extended, for example, to nested sums of vortex patches without great
difficulty, simply by choosing φ0 to have a successive series of zeroes at the boundary of each
vortex patch. (F would no longer vanish entirely, but it would take on only discrete values, a
minor complication.) But this would not work for initial densities whose level sets are C1+α

but which have no regularity at all in directions perpendicular to the level sets, which we
allow in Theorem 2.3. Any choice of φ0 that vanishes on these level sets would necessarily
vanish on open sets, and hence the level sets would not be regular points of φ0.

Hence, it appears unavoidable to bring in the idea of pushing forward a frame, then using
the Cα regularity of the vector fields in the tangential direction to obtain the Cα regularity
of Z. This is the idea that Chemin [8] brought to bear on the vortex patch problem for the
2D Euler equations.

Another key difference between [3] and this paper is that Picard iteration on paramater-
izations of the boundary of the patch is used in [3], which avoids the need to regularize the
initial data—an issue that was perhaps the most troublesome in our approach. But applying
Picard iteration with the initial data in Theorem 2.3 has its own, seemingly insurmount-
able difficulties, especially in face of the complicated structure of the transport equations in
Section 8.
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